
Numerical Solution of 
Symmetric Positive Differential Equations 

By Theodore Katsanis 

Abstract. A finite-difference method for the solution of symmetric positive linear 
differential equations is developed. The method is applicable to any region with 
piecewise smooth boundaries. Methods for solution of the finite-difference equa- 
tions are discussed. The finite-difference solutions are shown to converge at es- 
sentially the rate O(hl1/2) as h -O0, h being the maximum distance between adjacent 
mesh-points. 

An alternate finite-difference method is given with the advantage that the 
finite-difference equations can be solved iteratively. However, there are strong 
limitations on the mesh arrangements which can be used with this method. 

Introduction. In the theory of partial differential equations there is a funda- 
mental distinction between those of elliptic, hyperbolic and parabolic type. Gen- 
erally each type of equation has different requirements as to the boundary or 
initial data which must be specified to assure existence and uniqueness of solutions, 
and to be well posed. These requirements are usually well known for an equation 
of any particular type. Further, many analytical and numerical techniques have 
been developed for solving the various types of partial differential equations, sub- 
ject to the proper boundary conditions, including even many nonlinear cases. 
However, for equations of mixed type much less is known, and it is usually diffi- 
cult to know even what the proper boundary conditions are. 

As a step toward overcoming this problem Friedrichs [1] has developed a the- 
ory of symmetric positive linear differential equations independent of type. Chu 
[2] has shown that this theory can be used to derive finite-difference solutions in 
two-dimensions for rectangular regions, or more generally, by means of a trans- 
formation, for regions with four corners joined by smooth curves. In this paper a 
more general finite-difference method for the solution of symmetric positive equa- 
tions is presented (based on [3]). The only restriction on the shape of the region is 
that the boundary be piecewise smooth. It is proven that the finite-difference solu- 
tion converges to the solution of the differential equation at essentially the rate 
O(h1'2) as h.-- 0, h being the maximum distance between adjacent mesh-points 
for a two-dimensional region. Also weak convergence to weak solutions is shown. 

An alternate finite-difference method is given for the two-dimensional case with 
the advantage that the finite-difference equation can be solved iteratively. How- 
ever, there are strong limitations on the mesh arrangements which can be used 
with this method. 

1. Symmetric Positive Linear Differential Equations. Let Q be a bounded open 
set in the m-dimensional space of real numbers, RI. The boundary of , will be 
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denoted by OQ, and its closure by Q. It is assumed that OQ is piecewise smooth. A 
point in Rm is denoted by x = (xl, X2, ***, xm) and an r-dimensional vector-valued 
function defined on Q is given by u = (Ul, U2, *, ur). Also let a1, a2, *, am 

and G be given r X r matrix-valued functions and f = (fN, f2, * * * fr) a given r- 
dimensional vector-valued function, all defined on Q (at least). It is assumed that 
the ai are piecewise differentiable. For convenience, let a = (a', a2, **.* am), so 
that we can use expressions such as 

m 

(1.1) V* (au) = Ea (au). 

With this notation we can write the identity 
m m i m a / i 

\mata i aU 
'L'ZaX (atu) = L + a - i=1 axj =aiO 

simply as 

(1.2) V*(au) = (V.a)u + ?aVu. 

The definitions for symmetric positive operators and admissible or semiad- 
missible boundary conditions were introduced by Friedrichs [1]. 

Let K be the first-order linear partial differential operator defined by 

(1.3) Ku = a *Vu + V* (au) + Gu. 

K is symmetric positive if each component, a', of a is symmetric and the symmetric 
part, (G + G*)/2, of G is positive definite on Qi. 

For the purpose of giving suitable boundary conditions, a matrix, ,B, is defined 
(a.e.) on Q by 

(1.4) 3=n-a, 

where n = (n,, n2, ** *, lnm) is defined to be the outer normal on 9Q. 
The boundary condition Mu = 0 on OQ is semiadmissible if M = u-,f, where 

,u is any matrix with nonnegative definite symmetric part, (,u + ,*)/2. If in addi- 
tion, 9Z,u- i3 9(g + ,B) = Rr on the boundary, OQ, the boundary condition 
is termed admissible. (9Z(,u-,) is the null space of the matrix (u-A 

The problem is to find a function u which satisfies 

(1.5) Ku=f onQ, 

Mu=O onOQ, 

where K is symmetric positive. 
Many of the usual partial differential equations may be expressed in this sym- 

metric positive form, with the standard boundary conditions also expressed as an 
admissible boundary condition. This includes equations of both hyperbolic and 
elliptic type. However, the greatest interest lies in the fact that the definitions are 
completely independent of type. An example of potentially great practical im- 
portance is the Tricomi equation which arises from the equations for transonic 
fluid flow. The Tricomi equation is of mixed type, i.e., it is hyperbolic in part of 
the region, elliptic in part, and is parabolic along the line between the two parts. 

The significance of the semiadmissible boundary condition is that this insures 
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the uniqueness of a classical solution to a symmetric positive equation. On the 
other hand, the stronger, admissible boundary condition is required for existence. 
The existence of a classical solution is generally difficult to prove for 'any particular 
case, and depends on properties at corners of the region. 

Let St be the Hilbert space of all square integrable r-dimensional vector-valued 
functions defined on Q. The inner product is given by 

(1.6) (u, v) u*v, 

where 
r 

u =v = uiv 
i~=l 

and 

(1.7) llull2 - (u, u) 

A boundary inner product is defined by 

(1.8) (u, V) B = f U.V 

wvith the corresponding norm 

(1.9) IJUIIB2 = (U, U)B . 

The adjoint operators K* and M* are defined by 

(1.10) K*u = -a *Vu - V (aXu) + G*u, 

(1.1 1) M*U = (,U* + MU . 

We will make use of the following lemmas by Friedrichs. 
LEMMA 1.1 (FIRST IDENTITY). If K is symmetric positive, then 

(1.12) (v, KU) + (V, MU)B = (K*v, u) + (M*V, U)B . 

LEMMA 1.2 (SECOND IDENTITY). If K is symmetric positive, then 

(1.13) (u, KU) + (U, MU)B = (U, GU) + (U, gU)B . 

LEMMA 1.3. Suppose u is a solution to (1.5) where M is semiadmissible. Let X0 be 
the smallest eigenvalue of (G + G*)/2 in Q. Then 

(1.14) IJUJI _- (11XG) lIfjj - 

LEMMA 1.4. Let u satisfy Eq. (1.5) where M is semiadnissible. Further, assume 
that (A + I*)/2 is positive definite on aQ with smallest eigenvalue X,,. Then 

(1.15) ||U||B -< (1/(XGXt,)" 1) ||fj . 
Lemma 1.3 insures the uniqueness of a classical solution, and also that it is 

well posed in L2 for homogeneous boundary conditions. 
By widening the class of solutions to (1.5) to include weak solutions it is quite 

easy to prove existence of a solution to a symmetric positive equation under only 
semiadmissible boundary conditions. We will use Friedrichs' definition of weak 
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solution. Let V = C1(Q) n {vfM*v = 0 on aQ?}. A function u E SC (defined 
above) is a weak solution of (1.5) if f E SC and for all v E V 

(1.1 6) (v,f) = (K*v,u). 

It follows from the "first identity" (1.12) that a classical solution is also a weak 
solution. 

Friedrichs [1] proved the existence of weak solutions if M is semiadmissible. He 
also showed that, if, in addition, M is admissible and the weak solution is con- 
tinuously differentiable, then the weak solution must also be a classical solution. 

2. Finite-Difference Solution of Symmetric Positive Differential Equations. First 
we will express K in a form slightly different from (1.3), by the use of (1.2). We 
have 

(2.1) Ku = 2V*(au) - (V*a)u + Gu. 

Using the concept of vectors whose components are themselves matrices or 
vectors leads to somewhat simpler notation for the application of Green's theorem. 

LEMMA 2. 1 (GREEN'S THEOREM). -Let g be a continuously differentiable m- 
dimensional vector-valued function defined on Q C Rm, with vector components in 
either R, Rr or Rr X Rr. Then 

(2.2) fv.g= g.n. 

This result follows directly from the definitions, using Green's theorem. 
We now integrate the equation Ku = f over any region P C Q using (2.1) 

and Green's theorem to obtain 

(2.3) fKu = 2 fl u- (Va)u + fGu ff. 

By a suitable approximation to (2.3) the desired finite-difference equations will be 
obtained. 

Let H be a set of N mesh-points for Q. It is not required for the theory that the 
mesh-points all lie in Q. With each mesh-point xj E H we identify a mesh-region 
Pi C Q by 

Pi = {x||x - Xii < |x - Xk|, VXk EE H, k 5j; x EE Q. 

If Pj is adjacent to Pk we say that xj is connected to Xk (corresponding to the fact 
that the directed graph of the resulting matrix will have a directed path in both 
directions between j and k, see [4, p. 16]). Let lj,k = fx -xkl where xj is connected 
to Xk, and let h = -max lj,k. NoW' define Aj to be the "volume" of Pj and Lj,k to 
be the "area" of the (r - 1)-dimensional "surface" between Pj and Pk. We put 
ri,k = Pi n Pk. Fig. 1 illustrates mesh-points and corresponding mesh-regions 
for two dimensions. This concept of mesh-regions is based on the suggestions of 
MacNeal [5]. We will always use the notation Ej to indicate a sum over all points, 
Xj, in H, and Zk to indicate a sum over points, Xk, which are connected to some 
one point, xj. 
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The desired finite-difference equation can now be obtained by a suitable ap- 
proximation to Eq. (2.3). We use the symbol . to indicate the discrete approxima- 
tion that will be used for each expression. First 

(2.4) f fluL k . j,kf3j,k 
U Uk 

3,k2 

where uj = u(xj) and fj,k iS the value of : for Pj at the center of rJ,k. (Note that 
1j,k = -/3k,j.) The approximation to the next term of Eq. (2.3) requires approxi- 
mating u with uj first, and then applying Green's theorem before approximating a. 
With this we obtain 

(2.5) f (V .a)u f (V.a)uj #=f uj. 
Pi Pji dPj 

The final approximation is then 

(2.6) f uj . L j,kj,kUj 
ij,k 

Equations (2.4) and (2.6) take care of the integration over the interface between 
any Pj and Pk. Now we need to make an approximation for the boundary sides. 
It will be convenient to be able to subdivide Pj n 9Q into more than one piece. 
We will label each piece rJ,B and we will use the convention that EB will mean a 
summation over the B for just one j. We use 1j,B to denote the distance from xj 

to XB, where XB is located at the "center" of rj,B and Lj,B is used for the "area" 
of rj,B. Also 1j,B = 3(XB). This notation is indicated for the two-dimensional case 
in Fig. 1. The desired approximations are now given by 

(2.7) f j3u Lj,B#j,BUB, 
rj,B 

r 
(2.8) J uj L Lj,B[j,BUj. 

rj, B 

Finally the remaining terms in equation (2.3) are approximated by 

(2.9) f Gu. A jjuj, 

(2.10) 1 f . A jfjP 
Pj 

where Gj = G(xj) and fj = f(xj). Also we can approximate fKu by 

(2.11) f Ku-Aj(Khu)j, 

where Kh is the finite-difference operator to be defined and which will approximate 
K. Using approximations (2.4) to (2.11) in Eq. (2.3) we arrive at the following 
definition of Kh, 

(2.12) Aj(Khu)j = L j,kj,k + ZE Lj,BIj,B(2UB - Uj) + A jGjuj, 
k B 
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B t 

FIGURE 1. Typical mesh-regions in the two-dimensional case. 

where u here denotes a discrete function defined on H = H U {XB }, and uj = u(xj). 
We will seek to find a function defined on H and satisfying (Khu) j = fj for every 
xj E H. Of course the solution is not yet uniquely determined since there are more 
unknowns than equations. The boundary condition Mu = 0 will furnish us with 
the necessary information to determine u uniquely on H (but not necessarily on 
all of H). 

Using Mh to denote the boundary operator used to approximate M, we make 
the following definition 

(2.13) (MhU)j,B = !3,BUj - Oj,B(2UB - Uj) 

for all j where Pj is a boundary polygon, and for all boundary surfaces of Pi (each 
of which is associated with a point XB). It is easily seen that Mh is consistent with 
M (i.e., (MhU)1,B -* MU(Xj,B) as h -> 0 if u is continuous). The reason for this 
choice of Mh iS that the condition Mhu = 0 can be used to eliminate UB in Khu 

in a simple manner, and also we will be able to prove basic identities for the finite- 
difference operators analogous to those for the continuous operators (Eqs. (1.12) 
and (1.13)). 

The existence and uniqueness of a solution to the finite-difference equation 
and the convergence to a continuous solution as h -O 0 depends on proving the 
basic identities for the discrete operators. Let Rh be the finite-dimensional Hilbert 
space of discrete functions defined on H. The inner product is given by 

(2.14) (U, V)h = E Aujujvj 

and 

(2.15) flU1lh2 = (u, U)h 
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Also a "boundary" inner product is given by 

(2.16) (U, V)Bh = X ZLj,BUj,B.Vj,B 
j B 

for Pj a boundary mesh region, and 

(2.17) h= (u, u) Bh 

The discrete adjoint operators Kh* and Mh* are defined in the obvious way, 

(2.18) Aj(Kh*U) j = - E Lj,kj,kUk - E Lj,Blj,B(2UB - uj) + AjGj *uj 
k B 

(2.19) (Mh*U)j,B = Uj,BUj + fj,B(2UB - Uj) 

We can now give the "first identity" for the discrete operators. 
LEMMA 2.2. If K is symmetric positive, then 

(2.20) (V, KhU)h + (V, Mhu)Bh = (Kh*V, U)h + (Mh*V, U)Bh 

for any functions u, v defined on H. 
Proof. Using the definitions, Eqs. (2.12) and (2.18), we have 

(V, KhU)h - (KCh*V, U)h = E [ Lj,kvj-fj,kuk 
ji k 

+ E Lj, BVjj,B(2UB - U;) + A1jvjGj8u 
B 

+ E Lj,kf3j,kVk uJ 
k 

+ E Lj, BO,B(2VB - vj) *uj - A jGj *vjuj. 
B 

By rearrangement, since fj,k = - j,j, and since 0jk iS symmetric we have 

, Lfj,kiv,kVkoU= - 1 Lj,kVj' #jkttk 
k j k 

and we see that all terms cancel with the exception of the boundary terms, so that 

(v, KhU) h - (Kh *V, U)h 

(2.21) = j 
E Lj,B(Vj'3j,B(2UB - uj)+ fj,B(2VB - vj) .uU) 

j B 

On the other hand, using Eqs. (2.13) and (2.19), 

(Mh*V, 'U)Bh - (V, Mhu) Bh = E Lj,B(14,BVJ-Uj + 1O3,B(2VB - Vj) .Uj) 
j B 

- , Lj,B(Vj.I1j,BUj - Vjf1j,B(2UB - uj)) 
j B 

which is the same as the right side of (2.21). Hence the "first identity" for the dif- 
ference operators is proved. 

The discrete operators have been defined so that Kh + Kh* = G + G* and 
Mh + Mh* = + i*. By letting v = u in (2.20) we can prove the discrete "second 
identity" as for the continuous case. 

LEMMA 2.3. If K is symmetric positive, then 

(2.22) (u, KhU)h + (U, MhU)Bh = (U, GU)h + (U, /IU)Bh. 
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Using Eq. (2.13) and Mhu = 0 we can eliminate UB from Eq. (2.12) so that 
the equation KhU = f can be reduced to 

(2.23) E Lj,k,kUk + E Lj,BAi,BUj + A jGjuj = A jfj Vj1. 
k B 

If we consider the case when Q is two dimensional and rectangular, and the Pj are 
all equal rectangles, we can compare (2.23) with the finite-difference equation ob- 
tained by Chu [2]. The equation obtained by Chu is the same as (2.23) for interior 
rectangles, but is different for boundary rectangles. 

Let A be the rN X rN matrix of coefficients of (2.23). Letting (u, v) = Ej Uj vj, 
the ordinary vector inner product, we have 

(2.24) (u, Au) = (u, Khu)h + (U, Mhu)Bh. 

Hence, by the "second identity" (2.22), A has positive definite symmetric part 
which shows that A is nonsingular. We can also obtain an a priori bound forflujjh 
just as in the continuous case. 

LEMMA 2.4. Suppose u is a solution to Khu = f, Mhu = 0, where K is symmetric 
positive and il is semiadmissible. Then 

(2.25) lJU<lh ? (1/XG) Ilf l h 

If in addition, (, + Iu*) is positive definite on dQ, then 

(2.26) luI|Bh- (X X ) 1/2 IlfH|h 

These bounds are obtained from the "second identity." 
It is possible to show that the solution of the finite-difference equation (2.23) 

converges strongly to a continuously differentiable solution of equation (1.5), under 
the proper hypotheses. For simplicity we prove convergence only for the case when 
Q is two dimensional (m = 2). Extension to regions in higher dimensions, with the 
same rate of convergence, follows directly. To allow the type of comparison we 
wish to make we will define operators mapping a into 3h and vice versa. Let 
rh: 3C -> Jh be the projection defined by 

(2.27) (rhU) j = U(Xi) for all xj E H . 

In the other direction, let Ph: 3h -> ac be an injection mapping defined by 

(2.28) phUh(X) = (Uh) j, for all x E Pj. 

We immediately have the following relations, 

(2.29) rhph = I, 

(2.30) ||PhUhfl = lJuhH|h for all Uh E -Ch 

We can now state our basic convergence theorem for two-dimensional regions. 
THEOREM 2.1. Suppose that u X C2(Q2) satisfies 

Ku =f on Q C R2, 

Mu = 0 on OQ , 

where K is symmetric positive, and ,u + ?* is positive definite on dQ. For any given 
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h > 0, let Hh be a set of associated mesh-points such that the maximum distance between 
connected nodes is less than h and also that Lj,k, Lj,B and Ix - xjl for x E Pj are all 
less than h. It is assumed that the mesh is sufficiently regular so that h2/A j for each P3 
is bounded independently of h by a constant K1 > 0, which is possible for sufficiently 
nice regions. Also it is assumed that a uniform rectangular mesh is used for all Pj any 
point of which is at a distance greater than K2h from OQ, where K2 is a positive constant. 
It is assumed that a C C2(Q). 

Let uh E Rh be the unique solution to 

Khuh = rhf on Hh, Mhuh = 0 . 

Then Ilphuh -uj = 0(k) as h -*> 0 for any positive v < 1/2. 
Chu [2] proved convergence of his finite-difference scheme, where Q is a rectangle 

or a region with four corners, but the rate of convergence was not established. 
Proof. Define Wh = Uh - rhu. Let XG be the smallest eigenvalue of (G + G*)/2 

in Q. Using the "second identity" (2.22), we have 

IIWhIIh ? (I/XG)[(wh, Khwh)h + (Wh, Mhwh)Bhl. 

Using the Cauchy-Schwartz inequality, we have 

(2.31) IIWhIIh2 ? (1/XG)(IIwhIjhI[Khwhllh + IIWhlIBhIIMhWhIIBh) 

We will show that IJ IKhWhIIh = 0(h'12) and II MhWhIIBh = 0(h), as h -+ 0. We shall 
need the following lemma. 

LEMMA 2.5. Let g be a function defined on a finite region P C R2, and suppose 
that g satisfies a Lipschitz condition, i.e., there is a constant K3 > 0 such that 
19(x) - g(y)I < K31X - yj, for all x, y E P. Then, if Ao is the area of P and 
Ix - xol ? hinP, 

g0(xo)- g (x) K3h. 

We proceed now with the proof of the theorem. Let %, denote that portion of 
Q consisting of those Pj which are rectangular, and let 02 denote the rest of the Pj. 
From the hypothesis we see that the area of 02 is less than the length of dQ times 
K2h. We have now that 

(2.32) tKhAwhII2 = E f (KU (xj) - (KhrhU) j)2 + E f (Ku(xj) - (KhrhU) j)2, 
JEJI pj ieJ2 Pj 

where 

J;= {jlPjCQi}, i= 1,2. 

To simplify notation we will use uj for u(xj) and UB for U(XB). We now obtain a 
suitable bound for IKu(xj) - (Khrhu)jl 

|Ku(xj) - (KhrhU) ij <? 2 V - (au) (xj) - E l i,k(Uj + Uk) - 2 E3 A j,BUB 
k Aj B Aj 

(2.33) 
+ (V a)u(x) - ik kj _ LJ B UI 

k Aj f Aj 
Consider the first term in the last expression above - 
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2V (au) (xj) - Z k A 3,k(u? + Uk) - 2 A3i, BUB 

< |2V (au) (xj) -2 f V. (au) 

(2.34) ? 2f (2u- (1u) j k) 

+ E f 2(3u - (3U) j,B) 
B j, B 

?T 3Jk,k(2Uj,k- (Uj + Uk)) 

By Lemma 2.5, since a and u - C2(Q) imply that their derivatives satisfy a Lip- 
schitz condition, 

(2.35) |2V (au)(xj)- +2f V. (au) = 0(h) . 

We consider now the case when j E J1, so that Pj is a rectangle with xj at 
the center. 

Since u C C2(Q), we have 

1j,k J, k 
Uj = Uj,k - 2 7Uj,k + (4)2 U (1) 

ilk I j~k 
Uk = Uj,k + 2 Uj,k + (4)2 u() 

where the derivatives are directional derivatives in the direction Xk- xj. Hence, 
if lu"l < K3 in Q, we have 

12uj,k - (Uj + Uk) I < (K3/4)h2 

This means that 

(2.36) f | 3j,k(2Uj,k - (Uj + Uk)) < Lj,kIIfj,k!I 12uj,k - (uj + uk)I = 0(hw) 
ij,k 

when j C Ji. 
We now examine a Taylor series expansion for flu about the point XJ,k = 

(xj + Xk)/2. 

(2.37) fl(xJ,k + tz)u(xJ,k + tz) = (OfU) j,k + t( dt (flu)) + 2? W(t ) 

fl(xj,k - tz)u(xJ,k - tz) = (,Bu)j,k - d(-dt (Bu)) + 4 (2) 

where z is a unit vector orthogonal to xj- Xk, t is a scalar parameter, g(t) = 

(91(6i), 92(Q2), * * , gr(tr)), gq is the ith component of the vector (d2/dt2)(flu), and (j 
is a point on the straight line between Xj,k + (Lj,k/2)z and Xj,k - (Lj,k/2)z. Using 
(2.37) we obtain the following bound, 
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(2.38) f flu - (fu) j,k = 0(h3). 
ij,k 

Now, using (2.35), (2.36) and (2.38) in (2.34) we obtain 

(2.39) 2V (aU) (xj) - E A lj,k(uj + Uk) = 0(h) 
k Aj 

for all j E J1, since h2/A j ? K1 and the boundary terms are not present. 
Consider now the second term on the right of (2.33): 

(V.a)u(xj) E A - ku E A lj ,BUJ 

(2.40) ? (V.a)u(x3) - I 
f (V.a)u ? + f , (V.a)(u - uj) 

+ A f (f - f uk)ui + E f (f - J,Bs)uj . 
j k rjk B iJ,B 

By Lemma 2.5 

(2.41) (V.a)i(xi)-+f (V.a)u = 0(h) . 

Next, since u satisfies a Lipschitz condition, [x - xjl < h for all x 6 Pj, and 
since IIV ajI is uniformly bounded in Q, we have 

(2.42) f1 r|f(V.a)(u-Uj) = 0(h). 

Finally, since Oj,k and fj,B are each evaluated at the midpoint of Pik or rF,B, 
respectively, we can use a Taylor series analysis, as in deriving equation (2.38), 
to obtain 

(2.43) j ( - fkJ,k)ui + 'E - ( J,B)UJ = 0(h). 

Combining (2.41), (2.42), and (2.43) in (2.40) we obtain 

(2.44) (V a)u(xi) - E A _j _ku - E A _j BUi | (h) 

k 
Afj,1c - A3j,Bj=() 

Note that (2.44) holds for all j, not just for j E J1. 
We can now substitute (2.39) and (2.44) in (2.33) to obtain 

(2.45) IKu(xj) - (KhrhU) jI = 0(h) for all j C J1. 

We cannot obtain as good a bound for IKu(xj) - (Khrhu)jl when j J2, 
although (2.44) holds, since rF,k is not in general bisected by the line between xj 
and Xk. However, we can show that Ku(xj) - (Krhru)jl is uniformly bounded for 
j E J2, which is adequate since the area of 02 is of order h. The two inequalities 
which must be re-examined are (2.36) and (2.38). We now have, since u and (fu) 
satisfy Lipschitz conditions, that 
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(2.46) ,k (2Uj,k- (uj + Uk)) = 0 (h2) 
~j,k 

I U (flu) j,k = 0(h2) 
(2.47) j,k 

J l U (fU) j,B = 0(h ). 
~j,B 

Using this, with the other results which still hold, we see that Ku(xj) - (Khrhu) jl 
is uniformly bounded for j E J2, as h - > 0. Using this, together with (2.45) in 
(2.32) we obtain 

(2.48) I|Khwh!Ilh2 = 0(h2) + 0(h) 

so that 

(2.49) ||Khwhljh = 0(h'12) 

The next step is to show that IlMhwhllBh = O(h). We have 

IlMhWhIjB = IIMhrhuiIBh 

since Mhuh = 0. Now 

I|MhrhUII]h = L Lj,B(Lj,BUj - fj,B(2uB - Uj)) 
i B 

However, using the fact that A3j,BUB = j,BUB, 

/jA,BUj - /j,B(2UB - Uj)l = 0(h) 
since u is differentiable, and 11,11l and 11311 are uniformly bounded. This shows. 
that 

IIMhrhu||Bh = 0 (h) 
since Z j,B Lj,B iS simply the length of aQ. This proves that 

(2.50) IlMhwhllBh = 0(h). 

Using (2.49) and (2.50) in (2.31), we see that 

(2.51) IIWhllh2 = jWhjjh0(h 12) + IwhllBhO(h) 

From Lemma 2.4, lIWhllBh must be bounded, since 

flWhIIBh ? Ilthll Bh + llrhull Bh 

<- (xX)1 lrhfllh + llrhulIB, 
=(G)1/21h 

which is certainly uniformly bounded as h 0. Likewise Ilwhllh is bounded. So 
from (2.51) we have 

(2.52) flWhllh = 0(hl 14)e 

However, if we use (2.52) in (2.51) we get Iwlhllh = 0(h3/8), or by repeating this 
procedure enough times, 
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(2.53) whllh a-0(hv), for any positive v < 1/2 . 

Finally, we establish the convergence rate for IlPhUh - ull. We have 

(2.54) I|PhUh - Ull <? IWhllh + j|phrhU - Ull 

The last term can be estimated by 

(2.55) I|phrhu - U|| = E f (uj - u)- 0(h2) 

Using (2.53) and (2.55) in (2.54) we get 

(2.56) IlPhUh - Ull = 0(hv) + 0(h) = 0(hv), for any positive v < 1/2 . 

This completes the proof of Theorem 2.1. 
This finite-difference method can be applied to the Tricomi equation ([1], [3]). 

It is worthwhile noting that the solution obtained by the finite-difference solution 
of the symmetric positive form of the Tricomi equation consists of derivatives of 
the stream function, which corresponds to velocities in the physical problem. Hence, 
even though we have a convergence rate which is less than 0 (hl 12), it is essentially 
equivalent to a convergence rate of 0(h3'12) if the original second-order equation 
were solved directly for the stream function. 

If a rectangular mesh is used, we can partition the matrix A so as to be block 
tridiagonal. The matrix equation can then be solved by the block tridiagonal algo- 
rithm ([6] and [4, p. 196]). Schecter [6] shows that this algorithm is valid for any 
matrix with definite symmetric part. We have already shown that A has positive 
definite symmetric part. Schecter [6], also suggests an alternate procedure for re- 
ducing the computer storage requirements in solving the matrix equation. 

An alternate method of solution may be possible in some cases. A may be de- 
composed as A = D + S where D is Hermitian and S is skew symmetric. If the 
smallest eigenvalue, XD, of D is larger than the spectral radius, p(S), of S, then 

JID-1Sj1 < 1. In this case we can use a simple iterative method. Let u(?) be arbitrary, 
and define u W recursively by D u =- Su(1-1) + f. In this case limi,0 u W = u. 
In general, though, the eigenvalues of D will not be sufficiently large for this simple 
method to work. However, the original finite difference equations can be modified 
in some cases by the addition of a "viscosity" term, so as to obtain a convergent 
iterative procedure for the solution of the matrix equation. This will be discussed 
further in the next section. 

We can consider the discrete analogue of a weak solution. Let Vh be the set 
of discrete functions, Vh, defined on H and satisfying Mh*Vh = 0. For a discrete 
weak solution, Uh, we would then require that 

(2.57) (Kh*Vh, Uh)h = (Vh, rhf)h for all v C VhE 

From the "first identity" (2.20) we have then 

(2.58) (Vh, rhf)h = (Vh, KhUh)h + (Vh, MhUh)Bh for all v EVh 

We see from this that (Khuh) j = fj for all Pj which are not on the boundary, by 
choosing (Vh)j = 1, and (Vh)k = 0 for k 5 j. Because of the discrete nature of the 
equations we are not assured of Uh satisfying the boundary conditions. However, 
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conversely, if Uh satisfies Khuh =rhf and Mhuh = 0 we see immediately that (2.57) 
must be satisfied. 

Chu [2] has shown weak convergence of his finite-difference solution to a weak 
solution of a symmetric positive equation and Cea [7] has investigated generally 
the question of weak or strong convergence of approximate solutions to weak solu- 
tions of elliptic equations. Using these ideas, we can prove weak convergence of 
our finite-difference solutions to weak solutions of symmetric positive equations. 

THEOREM 2.2. For any h > 0, let Hh be a set of mesh points satisfying the require- 
ments of Theorem 2.1. It is assumed that a C C2(Q). Let Uh be the unique solution to 
Khuh = r,j, Mhuh -0. 

If {hi}' 1 is a positive sequence converging to zero, then {PhitUhi}l '1 has a sub- 
sequence which converges weakly in H to a weak solution, u, of Eq. (1.5), that is 
(K*v, u) = (v, f) for all v E V. 

Furthermore, if u is a unique weak solution, then { Ph .uh } converges weakly to u. 
Proof. First we note that jjphuhll is bounded, since Iphuhll = |uhll h (1/X0) IIrhfIIh, 

by Lemma 2.4. Hence, there is a subsequence of {phiUhi} that converges weakly to 
some u E ac. (See Theorem 4.41-B, Taylor [8].) For convenience of notation we will 
suppress the subscripts on the h. 

We have, for all v EV 

(2.59) I (Kh*rhV, Uh)h - (K*v, phuh) 

< (IlKh*rhv - rhK*vIjh + IlphrhK*v - K*vIj) I)phuhl . 

But l phrhK*v - K*v I I > 0, and in Theorem 2.1 we can substitute K* for K in 
equation (2.49) to show that IIKh*rhv - rhK*vjl O 0 (since Khwh = rh1Ku - Khrhu). 

Since jlphuhll is bounded, 

lim I (Kh*rhV, Uh) h - (K*v, phuh) I = 0 
h-*O 

However, since K*v EE a, we know that limh,o (K*v, phuh1) = (K*v, u). 
We have shown, then, that 

(2.60) lim (Kh*rhv, uh)h = (K*v, u) for all v E V. 

The discrete "first identity," Eq. (2.20), gives 

(2.61) (Kh*rhV, Uh)h + (M*rhV, Uh)Bh = (rhV, rkf)h. 

Hence 

(2.62) | (Kh*rhv, uh)h - (rhv, rhf)hI ?_ IIM*rhvllBhlluh lBh 

By Lemma 2.4 IIUhllBh < llrhfIIh/(XGX\y)"2 which is bounded. Also, the proof of 
equation (2.50) shows that limh-o flM*rhvllBh = 0, for all vE V, so that 

(2.63) lim I (Kh*rhV, Uh)h - (rhV, rhf)hI = 0. 

Further, it is obvious that 

(2.64) lim (rhV, rhf)h = (V, f) 
h_ +a 
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Combining (2.60), (2.63) and (2.64) gives 

(K*v, u) = (v, f) for all v C V 

which completes the proof of the theorem. 

3. Special Finite-Difference Scheme for Iterative Solution of Matrix Equation. 
As pointed out in Section 2, the matrix equation Au = f can be solved by an 
iterative procedure if the eigenvalues of the diagonal coefficient matrix are suffi- 
ciently large compared to the eigenvalues of the off-diagonal coefficient matrix. 
Following the idea of Chu [2] we modify the finite-difference equation by adding 
a "Cviscosity" term which will have a diminishing effect on the finite-difference 
equations as h -> 0, and yet will assure the convergence of an iterative method. 
Unfortunately, the method is not applicable to every arrangement of mesh-points. 
In fact there are rather severe restrictions which must be met. The first require- 
ment is that the difference in areas of adjacent mesh-regions be sufficiently small. 
This cannot be readily done along an irregular boundary, however, unless the 
boundary is modified. A problem arises if the boundary is modified. The boundary 
condition is given by Mu = (g - )u = 0 on dQ. We need to extend M to be de- 
fined in a neighborhood of the boundary. It is possible to extend M continuously 
in a neighborhood of the boundary. However, if the direction of the boundary 
changes, ( changes drastically, and we have no assurance that , will be positive 
definite. The second requirement then is that M can be extended continuously 
over a neighborhood of the boundary, in such a way that , will have positive 
definite symmetric part along the approximating boundary. 

Let Qh be an approximation to Q. Qh will have to meet several requirements to 
be specified later. Hh will denote a set of mesh-points associated with Qh and with 
maximum distance h between connected nodes, and Th will denote Hh U {XB 

The discrete inner product is given by 

(3.1) (Uhl Vh) = E j(uh) j (Vh) j 

with the A j being the area of Pj C Qh. Similarly, the "boundary" inner product 
is changed so that the lengths, Lj,B, are the lengths along aUh. 

We define now two new finite-difference operators, Kh and Mh, by 

(3.2) (ThU) i = (Khu) i + E uji-Uk + E a Uj - UB 
k li/,k B lI B 

(3.3) (MhU) j, B = (MhU) j, B 
o 

LAj (uj - UB) 

where a- is a positive number which must satisfy requirements to be specified later. 
It will be useful to prove a slightly different version of the "second identity." 
LEMMA 3.1. If K is symmetric positive, then 

(3.4) (Uh KhUh)h + (Uh, MhUh)Bh = (Uh, Gah)h + (Uh, uh) Bh + E 7 (Uj - Uk) 
(il k) l ,k 

where (j,k) indicates a sum over every (j, k) pair where xj is connected to Xk. 

Proof. Using the "second identity" for Kh and Mh, Eq. (2.22), we have 
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(Uh, Uhuh)h + (Uh, IihUh)Bh = (Uh, GUh)h + (Uh, MUh)Bh 

+ E E Uj (Uj - Uk) 

+ EE Uj' (Uj - UB) 

,ffA~uj Uj(Uj -UB) 
j B j,B 

The last two terms cancel. For the other term we have 

E E AUj (Uj - Uk) = (Uj - Uk2 
i k li,k ( j,k) lj,k 

which completes the proof. 
Lemma 3.1 immediately assures the existence and uniqueness of a solution for 

the special finite-difference scheme. Using 7hUh =0 to eliminate UB from KhUh 

rhf, we obtain 

(3.5) L Lj,k#j,k _ - oA j I)Uk + (AjGj + I + E Lj,Bj,B)Uj = Ajfj 
k lj,k k lj,k B 

for all xj C Hh. 

Let A be the matrix of coefficients of (3.5). 
LEMMA 3.2. If K is symmetric positive, then Khuh = rhf, Mhuh = 0 has a unique 

solution on Hh. 

Proof. The hypothesis implies that 

(u, Au) = (Uh, Khuh)h + (Uh, MhUh)Bh - 

By Lemma 3.1 A has positive definite symmetric part, and hence is nonsingular. 
Thus (3.5) defines Uh uniquely on Hh. 

Also it will be noted that the "second identity" of Lemma 3.1 will give the 
same a priori bounds for jjuhllh and IluhllBh as given by (2.25) and (2.26). 

We will now show that the special finite-difference scheme converges to a smooth 
solution, under a number of hypotheses given in the theorem. The theorem also 
includes all the hypotheses needed to- assure convergence of the iterative matrix 
solution. Though quite a number of requirements are given, there are only two 
essential restrictions, namely, that the areas A j must be nearly uniform, and that 
M can be specified on a modified boundary in such a way that A remains positive 
definite. 

THEOREM 3.1. Suppose that u C C2(Q) satisfies Ku = f on Q, Mu = 0 on dQ2, 
where K is symmetric positive. For any h > 0, let Qh be an approximation to Q, and 
let Hh be a corresponding set of mesh points with maximum distance h between con- 
nected nodes, and also with Lj,k, Lj,B, and Ix - xjl for x C Pj all less than h. It is 
assumed that the following hypotheses are satisfied: 

(i) There exists K1 > 0, independent of h, such that for every Pj we have h2/A j < K1. 
(ii) There exists K2 > 0, independent of h, such that all Pj with any point at a 

distance greater than K2h from aO are equal rectangles. 
(iii) There exists K3 > 0, independent of h, such that for all x C a0Qh, the distance 

from x to ag is less than K3h. 
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(iv) There exists K4 > 0, such that M can be extended so as to satisfy a uniform 
Lipschitz condition at all points at a distance less than K4 from dQ. 

(V) Qh is such that , = M + 3 has positive definite symmetric part on agh* 

(vi) Let W be the set of points that are a distance less than K4 from ag. Then a, G, 
and f are all extended to be defined on Q U iW with a EC C2(Q U W) and G positive 
definite on Q U W. 

(vii) There exists K5 > 0, independent of h, such that all points, xj, associated 
with a boundary polygon, Pj, are in the polygon, and at a sufficient distance, lj,B, 

from any boundary node, XB, of Pj so that A j < K5Lj,Blj,B. - 

(viii) Either- Qh C Q or else u can be extended so that u E C2(Qh). 

(ix) cr > nK1PB + d, where d > 0 and PB is the supremum of the spectral radius 
of n -a(x) for x C: Q U W, where n is any unit vector and n is the maximum number 
of nodes connected to any one node. 

(x) A ilAk - 11 < dXG(h')2/(rq2of2h), for all connected nodes, xj and Xk, where XG 

is the smallest eigenvalue of G in Qh, and h' = min(lj,k). 
(xi) The length of aQh is uniformly bounded. 
Let Uh be the unique solution to Khuh = rhf, Mhuh = 0; then 

flUh- rhUl= O(hv) as h -> 0, for any positive v < 1/2. 

Proof. Letting Wh = Uh -rhu, and using the "second identity," (3.4), we see 
that the inequality (2.31) is still valid for Kh and 7Fh, 

(3.6) lwlI*h2 < (1/XG)(jjwhj|hj Khwhhjh + JjwhjjBhjjMhwhllBh) 

We have 

Khwh = rhf - Khrhu 

hence 

(3.7) JlKhwhllh ? IlrhKu - KhrhujJh + jjKhrhu - Khrhujjh. 

In checking the proof of Theorem 2.1 we see that rhKu - Khrhu is the same as 
Khwh (Theorem 2.1), hence the bound of (2.49) holds for this term; 

(3.8) JjrhKu - Khrhujjh = 0(hl 12) 

For the other term we have 

(3.9) | j(Kh - Kh)rhUfl = E UE Uk + h Aa) j k lj,k B li, B 

Let J1 denote the set of subscripts for those Pj which are equal rectangles and 
let J2 denote the rest of the subscripts. When j C J, we have only the term 
Ek (Uj - Uk)/lj,k to consider. Because of the rectangular arrangement of points 
we can use a Taylor series analysis to show that 

Z Uj U = 0(h) 

so that 

(3.10) Z A j72( E uj-Uk 0 (h2 
jiEJl k lj,k 
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On the other hand, when j J2we cannot do as well. However, we note that both 
(u; - uk)/lj,k and (u; -UB)/lj,k are uniformly bounded since u has a bounded 
derivative. Also, by hypothesis (ii), EjCj2 Aj = 0(h), so that 

(3.11) Z 
A~oj(2 uj Uk + E Uj - u2= 

jCJ2 k 1j,k B 1j,B 

It is assumed, of course, that the number of nodes connected to any one node is 
bounded as h -* 0. 

Now, using (3.10) and (3.11) in (3.9) we have 

(3.12) I(TKh - Kh)rhullh = 0(h"2) 

Taking this together with (3.8) in (3.7) finally 

(3.13) ITKhwhJjh = 0(h"'2) . 

It is necessary now to obtain a bound for JJMhWhIIBh. Since MhWh = -Mhrhu, 

we have 

(3.14) IIMhWhIIBh ? IIMhrhuljBh + Jj(M,h - 
Mh)rhuIIBhL 

We have 

IlMhrhUIIB2 = E ELj,B(j,B - Oj,B(2UB - Uj))2. 
i B 

We can establish a bound, since 

lAj,B - Oj,B(2uB - uj)I ? jiB(Uj - UB)l 

+ I (j,B - 0j,B)UBj + |0j,B(Uj - UB)I 

The first and last term on the right are of order h, since u is differentiable and 
IJAIIj and 11j11 are bounded. By hypothesis (iv) M satisfies a Lipschitz condition, 
and so does u. Since the distance from XB to 0Q is less than K3h by (iii) and Mu = 0 
on 0Q, we see that | (,Uj,B - 0j,B)UBI = 0(h). Since, by (xi), Ej >B Lj,B is uni- 
formly bounded, we have 

(3.15) IlMhrhuIiBh = 0(h). 

Also, by using (vii) 

(3.16) ||(Mh - Mh)rhUIB 2< E E Lj,BK 
22 

(Uj - UB) = 0(h 2). 
i B 

This shows that 

(3.17) IIMWhIIBh = 0(h) . 

We check now to see that IlwhIlh and IlWhllBh are bounded. We have, using the 
a priori bound for IJuhIlh, 

(3.18) JJWhlIh _ (1/XG)iirhfilh + IIrhuIih 

which must be bounded since f and u are. In the same manner, IlWhllBh must be 
bounded. Using this fact together with (3.13) and (3.17) in (3.6) we have 

(3.19) iIwhlIh = 0(h"14) . 
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Using now (3.19) in (3.6) we get IlWhllh = 0(h3'8) and by repeating the process as 
many times as needed we get 

(3.20) IlWhllh = 0(hv) for any positive v < 1/2. 

This completes the proof of Theorem 3.1. 
For the iterative solution of the matrix equation Au = f we will split A into a 

block diagonal part D, and off diagonal part B. (We will suppress the subscript h 
on the finite-difference solution Uh.) Thus, from (3.5), the jth block of D is an 
r X r matrix, 

crA 
Dj = AjGj + J I+ E Lj,BAj,B 

k j,k B 

and a typical block element of B is 

Bj,k= Lj, - k AI 
li,k 

and A = D + B. The iterative method is given by 

u(i+') = -D-'Bu(i) + D-lf 

where u(?) is arbitrary. The hypotheses of Theorem 3.1 assure the convergence of 
u M to u. 

THEOREM 3.2. For any h > 0, let Qh and Hh satisfy the hypotheses of Theorem 
3.1. Let u(0) be an arbitrary vector defined on Hh, and let {u(I) }u =o be a sequence de- 
fined recursively by 

u(i+1) = -D-'Bu(i + D-lf 

Then lim,0 u(i) = u, where Au =f. 
Proof. By the contraction mapping theorem it is sufficient to show that 

I D-1BJj < 1 for some matrix norm. Let v be an arbitrary vector defined on Hh, 
and let w = D-'Bv. Since Dw = Bv, we have (w, Dw) = (w, Bv), or 

Z W.(A jGj + Et I + E Lj,BAj,B)W 
j k lj,k B 

(3.21) <2E Wj3(- A 
I-LjkjkW 

+ 
I 

E EVk( 
j I - Lj,ki,k Vk 

X ~ ~~~ ~ i k lj,k 

This last inequality follows from the fact that 

(w, Hy) < '(w, Hw) + (v,T Hv) 

for any positive definite Hermitian matrix. We see that (oAj)/(lj,k)l- Lj,kfj,k is 

positive definite, since 

(3.22) OA/lli,k ? Lj,kp(Qj,k) 

by (i) and (ix). By rearranging the terms of (3.21) so as to have all the w terms 
on the left and all the v terms to the right, we obtain 



782 THEODORE KATSANIS 

,wj. (A jG + 
, 
Lj, Blj, B Wi + 2 E wj j- I + Li,kOj,k WY 

(3.23) B + i k 1 ,k 

<- E E Vj Qjk I+ Lj,kf3,k) V3 

The last expression was obtained by interchanging j and k, since 

0j,k = 3k,j. 

We can write (3.23) in the following form. 

, wi- AiGi+ E Lj, B14, B wj+ 2 wj-( I I+ L,j,k0)kWj 
(3.24) B i k j,k 

Y 2 vj( I + Lj,k+,kvj + 2 (Ak-Aj)vj' i k 1j,k 2 k 1 j,k 

or 

(3.25) (w, Xw) + (w, Yw) _ (v, Yv) + (v, Zv) 

where X, Y, and Z are 'matrices defined by (3.24). 
We have already shown that Y is positive definite (using (3.22)); hence we can 

define a norm by 

(3.26) llvI y2 = (V, Yv). 

We will show that D-'B is a strict contraction in the Y norm. First we will need 
some inequalities. We have 

(3.27) (w, Xw) > XGIIWIIh2. 

-By (i) and (ix) we have 

(3.28) (w, Yw) < (?qof/h') IwIIh 

Also (w, Yw) can be bounded below by using (i) and (ix): 

(3.29) (v, Yv) > (d/2h)iIvIIh2. 

Finally, we have 

(3.30) (v, Zv) ? A(n7/2h')IIvIjh2 

where A = max IAk/A j - I, for all connected nodes, xj and Xk. From the defini- 
tion (3.26), and using (3.27) and (3.28) we have 

(3.31) (w, Xw) + (w, Yw) > (1 + XGh'/'iY)IIwIjY2. 

On the other hand from (3.29) and (3.30) 

(3.32) (v, Yv) + (v, Zv) _ I + qcA 
()]VII V2 

Substituting (3.31) and (3.32) in (3.25) we have 

(3.33) dlWlly < ( + Gh'/ . 
I + XGh'/77u 
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Since w = D-'Bv, and v is arbitrary, we see that JID-'BIJ y < 1 since 

dXGh' (h') 
(3.34) A< <72c2 

by hypothesis (x). This completes the proof of Theorem 3.2. 
Of course, if Qh can be selected so that all the A j are equal, then hypothesis (x) 

is satisfied, and 

(3.35) I1D-'BIJ y < (l + (XGh'/o))1/2 

In the special case where all the Pj are equal rectangles, q 4, so that 

(3.36) 11D-'BIIy < ( + (Xch,/4of)1/2 

4. Concluding Remarks. The Tricomi equation can be expressed in symmetric 
positive form. In [3] a Tricomi equation with a known analytical solution was 
solved numerically as an illustration of the numerical results which can be ob- 
tained. There was strong convergence to the analytical solution, but pointwise 
divergence. However, smoothing of the solution produced satisfactory numerical 
results. 
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